The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper I gene.
نویسندگان
چکیده
The spines and bloom of cucumber (Cucumis sativus L.) fruit are two important quality traits related to fruit market value. However, until now, none of the genes involved in the formation of cucumber fruit spines and bloom trichomes has been identified. Here, the characterization of trichome development in wild-type (WT) cucumber and a spontaneous mutant, glabrous 1 (csgl1) controlled by a single recessive nuclear gene, with glabrous aerial organs, is reported. Via map-based cloning, CsGL1 was isolated and it was found that it encoded a member of the homeodomain-leucine zipper I (HD-Zip I) proteins previously identified to function mainly in the abiotic stress responses of plants. Tissue-specific expression analysis indicated that CsGL1 was strongly expressed in trichomes and fruit spines. In addition, CsGL1 was a nuclear protein with weak transcriptional activation activity in yeast. A comparative analysis of the digital gene expression (DGE) profile between csgl1 and WT leaves revealed that CsGL1 had a significant influence on the gene expression profile in cucumber, especially on genes related to cellular process, which is consistent with the phenotypic difference between csgl1 and the WT. Moreover, two genes, CsMYB6 and CsGA20ox1, possibly involved in the formation of cucumber trichomes and fruit spines, were characterized. Overall, the findings reveal a new function for the HD-Zip I gene subfamily, and provide some candidate genes for genetic engineering approaches to improve cucumber fruit external quality.
منابع مشابه
Trichome-Related Mutants Provide a New Perspective on Multicellular Trichome Initiation and Development in Cucumber (Cucumis sativus L)
Trichomes are specialized epidermal cells located in aerial parts of plants that function in plant defense against biotic and abiotic stresses. The simple unicellular trichomes of Arabidopsis serve as an excellent model to study the molecular mechanism of cell differentiation and pattern formation in plants. Loss-of-function mutations in Arabidopsis thaliana have suggested that the core genes G...
متن کاملA New Glabrous Gene (csgl3) Identified in Trichome Development in Cucumber (Cucumis sativus L.).
Spines or trichomes on the fruit of cucumbers enhance their commercial value in China. In addition, glabrous mutants exhibit resistance to aphids and therefore their use by growers can reduce pesticide residues. Previous studies have reported two glabrous mutant plants containing the genes, csgl1 and csgl2. In the present study, a new glabrous mutant, NCG157, was identified showing a gene inter...
متن کاملHD-Zip Proteins GL2 and HDG11 Have Redundant Functions in Arabidopsis Trichomes, and GL2 Activates a Positive Feedback Loop via MYB23.
The class IV homeodomain leucine zipper transcription factor GLABRA2 (GL2) acts in a complex regulatory circuit that regulates the differentiation of trichomes in Arabidopsis thaliana. We describe a genetic interaction with HOMEODOMAIN GLABROUS11 (HDG11), previously identified as a negative regulator of trichome branching. gl2 hdg11 double mutants display enhanced trichome cell-type differentia...
متن کاملHomeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships.
Members of the homeodomain leucine zipper (HDZip) family of transcription factors are present in a wide range of plants, from mosses to higher plants, but not in other eukaryotes. The HDZip genes act in developmental processes, including vascular tissue and trichome development, and several of them have been suggested to be involved in the mediation of external signals to regulate plant growth....
متن کاملThe HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2.
Most of the plant homeodomain-containing proteins play important roles in organ patterning and development, and Arabidopsis GLABRA2 (GL2), a member of the class IV homeodomain-leucine zipper (HD-ZIP) proteins, is a trichome and non-root hair cell regulator. Here we report the analysis of two cotton homeodomain-containing proteins, GaHOX1 and GaHOX2, isolated from the diploid cotton Gossypium ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 66 9 شماره
صفحات -
تاریخ انتشار 2015